
Comparison of the twomajor
classes of assembly algorithms:
overlap^layout^consensus and
de-bruijn-graph
Zhenyu Li*, Yanxiang Chen*, Desheng Mu*, JianyingYuan,Yujian Shi, Hao Zhang, Jun Gan, Nan Li, Xuesong Hu,
Binghang Liu, BichengYang and Wei Fan

Advance Access publication date 19 December 2011

Abstract
Since the completion of the cucumber and panda genome projects using Illumina sequencing in 2009, the global
scientific community has had to pay much more attention to this new cost-effective approach to generate the
draft sequence of large genomes.To allow new users to more easily understand the assembly algorithms and the op-
timum software packages for their projects, we make a detailed comparison of the two major classes of assembly
algorithms: overlap^layout^ consensus and de-bruijn-graph, from how they match the Lander^Waterman model,
to the required sequencing depth and reads length. We also discuss the computational efficiency of each class of
algorithm, the influence of repeats and heterozygosity and points of note in the subsequent scaffold linkage and
gap closure steps. We hope this review can help further promote the application of second-generation de novo
sequencing, as well as aid the future development of assembly algorithms.
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INTRODUCTION
One of the most important tasks in genome biology

is to obtain a complete genome sequence, which is

finished by a combination of sequencing technology

and assembly software [1–3]. The high cost of Sanger

sequencing technology has long been a limiting

factor for genome projects, as we can see from the

limited number of large genomes published before

2010. Fortunately, the second-generation sequen-

cing technologies Roche/454 (www.454.com),

Illumina/solexa (www.illumina.com) and AB/Solid

(www.appliedbiosystems.com), which arrived in the

market in 2005 and rapidly developing since then,

have dramatically lowered the cost per sequenced

nucleotide and increased throughput by orders of

magnitude. However, although the second-

generation technologies are comparatively very

cheap, their application was mainly restricted to rese-

quencing projects [4, 5] where a good reference se-

quence existed, due to the much shorter read length

(30–400 bp) in comparison with Sanger sequencing

(500–1000 bp). In light of this, a major question that

confronted us was, can we de novo sequence and as-

semble a large genome (>100 Mbp) using short

reads? If so, sequencing cost no longer becomes a

limiting factor for most denovo large genome projects,

and sequence assembly becomes the major challenge.

The evolution of assembly algorithms has accom-

panied the development of sequencing technologies.

Currently, there are two widely used classes of
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algorithms: overlap–layout–consensus (OLC) and

de-bruijn-graph (DBG) [1–3]. OLC generally

works in three steps: first overlaps (O) among all

the reads are found, then it carries out a layout (L)

of all the reads and overlaps information on a graph

and finally the consensus (C) sequence is inferred. It

is an intuitionistic assembly algorithm, initially de-

veloped by Staden (1980) and subsequently extended

and elaborated upon by many scientists. OLC

became successful with the wide application of

Sanger sequencing technology. Many widely used

assembly programs adopted OLC, such as Arachne

[6], Celera Assembler [7], CAP3 [8], PCAP [9],

Phrap [10], Phusion [11] and Newbler [12].

DBG is an anti-intuition algorithm, working by

first chopping reads into much shorter k-mers and

then using all the k-mers to form a DBG and finally

inferring the genome sequence on the DBG. This

algorithm was originally introduced in 1995 by

Ramana M. Idury and Michael S. Waterman [13],

and the first DBG assembler EULER was published

in 2001 by Pavel Pevzner and Michael Waterman

[14]. DBG was initially little known in the assembly

area for a long time and few people predicted its

potential importance. However, this situation dra-

matically changed upon Illumina/solexa sequencing

technology entering the market, and several

short-read assembly software have since been de-

veloped based on DBG, such as Euler-USR [15],

Velvet [16], ABySS [17], AllPath-LG [18] and

SOAPdenovo [19]. The DBG assemblers were ini-

tially successful on small genomes such as bacteria,

and were then extended to large genomes. Since the

completion of the cucumber [20] and panda [21]

genome projects using Illumina sequencing, re-

searchers around the world have seen a new

cost-effective approach to generate the draft se-

quence of large genomes.

However, this idea was not unanimously accepted

immediately. Some studies discussed the shortages of

short-read assembly algorithms, and showed concern

about the quality of draft assemblies [22, 23], whereas

other studies produced results to support the appli-

cation of short-read assembly in large genomes

[18, 19]. This debate is still far from being resolved.

As the reads length of second-generation technolo-

gies has increased with time, and DBG-based assem-

bly algorithms have also continued to improve, we

believe that de novo assembly with second-generation

sequencing will generate better results than ever, and

this method will be adopted by more and more

genome projects. To allow new users to more

easily understand the assembly algorithms and

choose the correct software for their projects, in

this perspective, we make detailed comparisons of

the two major classes of assembly algorithms: OLC

and DBG. We hope this article can help promote the

application of second-generation de novo sequencing,

as well as shed light on the future development of

assembly algorithms.

IDEAL SEQUENCING DATA AND
MATHEMATICALASSEMBLY
MODEL
As an easy-to-understand illustrative example, we

will first discuss the simplest assembly model using

hypothetical ‘ideal’ genome sequencing data. The

simplest genome can be viewed as a long random

sequence comprising four types of bases (A, C, G

and T), and ignoring repeats and all other complex

structures. Here, we start with the most basic

sequencing strategy, single-end whole-genome-

shotgun (WGS) [24], which can be thought of as a

process of sampling equal-length fragments with the

starting points distributed randomly along the

genome. Sequencing errors and all other biases are

ignored so that the sequencing data can be thought as

ideal. Note that the read length is far shorter than the

genome size. In computer theory, ideal assembly

would involve just finding the common string

(genome) of all substrings (reads). In the following

examples, we will discuss the concepts of base and

k-mer coverage, Lander–Waterman model and basic

OLC and DBG assembly models by using this ideal

sequencing data.

Base coverage and K-mer coverage
Sequencing of this ‘ideal’ sequence can be thought of

as a process of sampling bases from all the genomic

positions randomly. Given the probability that one

base in a specific position of the genome to be

sampled is very low in a single sampling process

and the number of times of sampling is compara-

tively a quite large number, the problem of base

coverage of the genome follows a Poisson distribu-

tion [25]. A k-mer is a string extracted from reads

with specified length K. Similarly, the problem of

k-mer coverage of the genome also follows a

Poisson distribution [26] (Figure 1). To further clar-

ify this, we can illustrate the coverage problem using

two concepts: coverage depth (the average number
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of times each base/k-mer is being sequenced) and

coverage extent (the ratio of genome covered by at

least one base/k-mer). Given a genome size (G), read

length (L), read number (N), and k-mer size (K), the

total number of bases (nb) and k-mers (nk) can be

easily determined by (nb¼N * L) and [nk¼N *
(L-Kþ1)], with the ratio between them being [nb/

nk¼L / (L�Kþ1)]. We can also calculate the cover-

age depth for bases (db) and k-mers (dk) by (db¼ nb/

G) and (dk¼ nk/G), with the ratio between them

being (db / dk¼L / (L�Kþ1)). For the de novo pro-

jects, these formulas can be used to estimate the un-

known genome size (G) and coverage depth for

bases (db) from read data before assembly [26],

using the formulas (G¼ nk / dk) and (db¼L / (L^
Kþ 1) * dk). The number of k-mers (nk) can be ob-

tained by directly counting k-mers from reads [27],

whereas the coverage depth of k-mers (dk) can be

observed from the peak depth value on the k-mer

coverage depth distribution curve (Figure 1). In

practice, these formulas need some correction be-

cause of the effect of sequencing errors.

Base coverage depth (db), which reflects the total

amount of sequencing data, is one of the most im-

portant parameters for a de novo sequencing project.

Shortened, it is often called and marked as sequen-

cing depth (c). Base coverage extent, is another very

useful parameter that can help us decide the required

sequencing depth for a de novo project. Because the

base coverage follows a Poisson distribution, the

probability of non-coverage is equal to

P(X¼ 0)¼ e�c, so the coverage extent of bases is

equal to P(X> 0)¼ 1� e�c (Table 1). To cover

>99% of a genome, the sequencing depth should

be >4.6. Taking into account sequencing biases,

traditional genome projects using Sanger sequencing

often use a slightly larger sequencing depth to

achieve the 99% coverage extent [28, 29]. To

ensure the whole genome is covered, the number

of uncovered bases G * e�c should be <1. Taking

the human genome (3 Gb) as an example, the

sequencing depth c needs to be at least 22. The

larger the genome size, the higher sequencing

depth is needed. For genome projects sequenced

by second-generation technologies [20, 21], which

often generate more than 30� depth of data, there

seems to be less need to worry about the coverage

extent for most genomes because of (e�30
¼ 1e� 13),

which is a significant improvement over the Sanger

sequencing projects [28, 29]. In practice though, be-

cause of sequencing bias, not every region of the

genome is sampled randomly, so the coverage

extent is often worse than expectation.

Looking back to the Lander^Waterman
model
In 1988, Lander and Waterman published the first

mathematical model for sequence assembly [30],

which was established on the ideal sequencing data

(discussed in the previous section). In that model, if

two reads overlapped and the overlap length was

larger than a cutoff (T ), then the two reads should

be merged into a contig (continuous sequence), and

this process is iterated until no reads or contigs can be

merged. One of the most useful conclusions to come

from this is that the resulting contig number can be

calculated. Assuming each contig contains a right-

most read, then the contig number is equal to the

number of rightmost reads, which can be calculated

as (G * c/L) * e�c[(L�T)/L], where G * c/L is read

number and e�c[(L�T)/L] is the probability that a read

is rightmost. For further details on these, refer to the

Lander–Waterman paper [30]. In practice, an equal

or larger overlap length than the cutoff T is often

required to determine overlap and the formula to

calculate contig number should be changed to

(G*c/L)*e�c[(L�Tþ1)/L].

The Lander–Waterman model shows that the re-

sulting contig number is related to four parameters:

read length (L), overlap length cutoff (T), sequencing

depth (c) and genome size (G). As G is a fixed

number in a given genome project, there are there-

fore only three parameters (L,T and c) that can be

adjusted. L is often determined by the sequencing

platforms and T determines the reliability of overlap
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Figure 1: Distribution of base (k-mer) coverage, using
40� error-free sequencing data of any genome size. As
the base coverage depth (db) is 40, assuming that read
length (L) is 100bp and k-mer size (K) is 25bp, the
k-mer coverage depth (dk) is 30.4, which can be
calculated by dk¼db*(L�Kþ1)/L.
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between reads, with a larger T usually resulting in a

more reliable overlap. In most cases, we would want

to know that given a pair of L andT, what should c

be to achieve an expected assembly result? To

answer that question, two figures need to be plotted,

one with T fixed, and the other L. The number of

contigs represents the fragmentation level of the as-

sembly. The fewer the remaining contigs, the better

the assembly result is. In Figure 2A, T is fixed and L
changed to compare assembly results under different

read lengths. This shows that using 30� 50 bp reads

can generate an assembly result similar to that of

using 10� 500 bp reads, which means that a high

sequencing depth can compensate for the disadvan-

tage of short read length, and given a specified

sequencing depth, longer reads can result in a

better assembly result. In Figure 2B, L is fixed and

T changed to compare assembly results under differ-

ent overlap lengths. This shows that using 10� data

with T (20 bp) can achieve similar assembly results as

that obtained using 20� data with T (61 bp), which

means that a larger overlap length requires higher

sequencing depth and given a specified sequencing

depth, a smaller T generates longer contigs but sac-

rifices some of the overlap detection accuracy.

Choosing the correct L and T value is important

for a de novo project and when the L andT are deter-

mined, the required sequencing depth c can be

inferred according to the expected assembly result.

Basic OLC and DBG assembly
algorithms
In this section, we discuss the basic OLC and DBG

algorithms using the ideal sequencing data. Both

OLC- and DBG-based algorithms assemble the

genome by utilizing the overlap information

among the input set of reads that conform to the

Lander–Waterman model [30]. The OLC algorithm

is very consistent with Lander–Waterman model,

Table 1: Base coverage extent of the genome versus sequencing depth

Sequencing
depth

Uncovered ratio
(%)

Uncovered
bases

Sequencing
depth

Uncovered
ratio

Uncovered
bases

Sequencing
depth

Uncovered
ratio

Uncovered
bases

1 36.79 1103 638324 11 1.67E-05 50105 21 7.58E-10 2
2 13.53 406 005 850 12 6.14E-06 18 433 22 2.79E-10 0.84
3 4.98 149361205 13 2.26E-06 6781 23 1.03E-10 0.31
4 1.83 54 946917 14 8.32E-07 2495 24 3.78E-11 0.11
5 0.67 20 213 841 15 3.06E-07 918 25 1.39E-11 0.04
6 0.25 7436257 16 1.13E-07 338 26 5.11E-12 0.02
7 0.09 2735 646 17 4.14E-08 124 27 1.88E-12 0.01
8 0.03 1006388 18 1.52E-08 46 28 6.91E-13 0.00
9 0.01 370229 19 5.60E-09 17 29 2.54E-13 0.00
10 4.54E-05 136200 20 2.06E-09 6 30 9.36E-14 0.00

Note:We use c to represent sequencing depth.The uncovered ratio of genome is calculated by e�c, whereas the uncovered bases of genome is cal-
culated by G*e�c.We use genome size (3 Gb) of human, e.g. to calculate number of uncovered bases.Values from two sequencing depths (5 and 22)
are highlightedwith bold style, whichmeans1% genome uncovered and1base of genome uncovered, separately.
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Figure 2: Calculation of contig number for various
combination of c, L and T, by the normalized Lander^
Waterman formula (c/L)*e�c[(L�T)/L], which is unrelated
with genome size. (A) Fix the overlap length cutoff (T)
to 31bp, use different curves to represent result of dif-
ferent read lengths (L). (B) Fix the read length (L) to
100bp, use different curves to represent result of differ-
ent overlap length cutoffs (T).
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sharing the same definition of parameter T. In the

DBG algorithm, to ensure the k-mers can be linked,

the minimum overlap between two reads should be

no less than the k-mer size K that is equivalent to the

T parameter in the Lander–Waterman model. In

the formula used to calculate the contig number in

the Lander–Waterman model, c[(L�Kþ1)/L] is

equal to dk, and c/L is equal to dk/(L�Kþ1), allow-

ing the formula to be converted to [dk/

(L�Kþ1)]*(G*e�dk), indicating that in the DBG al-

gorithm, the result is related directly to the k-mer

coverage depth rather than the base coverage depth

(or sequencing depth). The G*e�dk also relates to the

number of uncovered genomic positions by k-mers,

which means that if the genome is fully covered by

k-mers, it can be completely assembled.

The methods used to exploit the overlap infor-

mation are different in OLC and DBG algorithms

[1–3]. In the OLC algorithm, the identification of

overlap between each pair of reads is explicit, typic-

ally by doing all-against-all pair-wise reads aligning.

In the DBG algorithm, the overlap relationship be-

tween neighboring k-mers is established implicitly.

This process is completed by chopping all the reads

into k-mers and simultaneously recording their

neighboring relations. As a result, the OLC algo-

rithm constructs a reads graph, which places reads

as nodes and assigns a link between two nodes

when these two reads overlap larger than a cutoff

length (Figure 3A). The nodes number is equal to

the reads number, increasing linearly with sequen-

cing depth and the links number will increase by a

logarithmic scale. The DBG algorithm constructs a

k-mer graph that places k-mer as nodes and assigns a

link between two nodes when these two k-mers are

neighbors on the genome (Figure 3B). The node

number is equal to the genome size (i.e. G�Kþ1),

and the links number is also equal to the genome size

(i.e. G�K) and unrelated to the sequencing depth.

Here we assume all k-mers are unique on the whole

genome sequence. In practice, the DBG nodes

number will be much higher than G�Kþ1 because

of the introduction of many false k-mers caused by

sequencing errors.

Although OLC and DBG algorithms have essen-

tially equivalent roles, they differ in the algorithm

complexity and computational efficiency [1–3]. In

OLC assembly using the reads graph, the layout

step is a Hamiltonian path problem, which is

known to be NP hard; however, in DBG assembly

using the k-mer graph, infering the contig sequence

is an Euler path problem that is easier to resolve [14].

Therefore, the main advantage of DBG is that it

transforms assembly problems to an easier problem

in algorithm theory. After the layout step, OLC

needs to call the consensus sequence from the mul-

tiple sequence alignments; whereas after the con-

struction of DBG, the k-mers already include the

consensus information. In addition, computational

feasibility is very important for genome assembly.

The DBG algorithm does not contain a

CPU-intensive reads aligning step and as mentioned,

the nodes (k-mers) and links numbers are approxi-

mately equal to the genome size, which makes it

achieve both higher CPU and Memory efficiency

than the OLC algorithm does when the sequencing

A B

R1 R2 R5R3 R4 R6 K1 K2 K15K3 K14 K16

Figure 3: Construction of OLC and DBG graph using example data from 20-bp length genomic region (top).
(A) We generated six reads (R1^R6) on this region. The read length (L) is 10bp, and the cutoff of overlap length
(T) is 5 bp.The reads were layout-orderly along the genome according to their starting position and the correspond-
ing OLC graph illustrated below, with most nodes having more than one ingoing or outgoing arcs. (B) The reads
were chopped into k-mers (K¼ 5bp), there are in total 16 different k-mers, most of which occur in more than one
reads. The k-mers were layout-orderly along the genome according to their starting position, and the structure of
DBG graph illustrated below, with most nodes having only one in-arc and one out-arc.
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depth becomes very high. This makes it especially

attractive for the second-generation sequencing pro-

jectsthat usually use high sequencing depth (>30�)

to compensate for the short read length (30–100 bp).

With this in mind, the DBG algorithm seems to be a

better choice for assembly of large genomes using

second-generation short reads.

SEQUENCING DATA AND
ASSEMBLYALGORITHMS IN
PRACTICE
In this section, we now turn to discussing the assem-

bly algorithms using real sequencing data. In practice,

there are several factors interfering with the detection

of real overlap among reads, all of which affect the

assembly. Some factors originate from the genome

and others originate from the sequencing technol-

ogy. The real genomes of plants and animals often

have large sizes ranging from �100 Mb to �10 Gb

[31], often containing a huge amount of repetitive

sequences, which are distributed across the whole

genome and composed of transposable elements,

short tandem repeats and large segmental duplica-

tions [32, 33]. According to previous reports, gen-

omes containing >30% repeats include silkworm

[28], panda [21], rice [29], cucumber [20], amongst

many others. In addition, DNA is not always ex-

tracted from a haploid genome (or homozygous dip-

loid genome), but extracted from heterozygous

diploid genomes in most cases. As polyploid gen-

omes will make assembly even more difficult, they

are seldomly chosen for denovo sequencing, especially

using short reads. The available sequencing technol-

ogies are far from perfect: the read length for differ-

ent sequencing platforms ranges from 50 bp to

1000 bp, with single-base error rate of raw reads ran-

ging from 0.1% to 3% [34, 35]. Repeats, heterozy-

gosity, limited read length and sequencing errors,

together create ambiguity in the overlap detection

between reads and make it difficult to determine

read order by the observed overlaps. Under specified

read length and single-base error rate, longer repeat

units, higher similarity among copies, larger amount

of repeats and higher heterozygous rates will result in

more fragmental assembly. Fortunately, most current

sequencing technologies provide pair-end sequen-

cing technology that provides further long-range

linkage information and is useful to cross repeats.

The usual purpose of assembly algorithms is to

produce a haploid genome sequence from a set of

pair-end WGS reads, which are derived from a

slightly heterozygous (<0.1%) diploid genome. For

de novo genome sequencing, it is better to extract

DNA from the haploid individual or the individual

with lowest heterozygous rate. Sequencing errors are

generated by the sequencing platforms, and a lower

rate of sequencing errors is beneficial for assembly.

Sequencing-error bases can be reduced by prefilter-

ing the raw reads with extremely low quality values

and also by performing error correction by utilizing

the high coverage information. The OLC algorithm

can tolerate some small heterozygous difference in

overlap detection by allowing a few mismatches

and producing a single path consisting of read

nodes. In contrast, with the DBG algorithm, the

heterozygous difference always leads to two paths

consisting of k-mer nodes coming from heterozy-

gous regions, respectively. However, these two

paths can be merged into one by some additional

work. Usually, the sequencing error rate (<1%)

and heterozygous rate (<0.1%) are low so they do

not seriously affect the assembly. In that case, most

effort is to deal with repeats. An idea shared between

both OLC and DBG algorithms is to identify the

repeats boundary and break the path at these bound-

aries, which prevent it from creating artificial paths

that do not exist in the genome. For both OLC and

DBG algorithms, the whole assembly pipeline can be

generally divided into four parts: data pre-processing,

contig construction, scaffold linkage and gap closure.

Each part will be discussed in the following sections.

Note that not all parts are necessary in assembly

software.

Data preprocessing
It is well known that raw reads from any current

sequencing platforms contain many sequencing

errors that affect sequence assembly. These can be

dealt with by filtering and correcting them. Most

sequencing technologies generate a quality value

for each base in the reads [36, 37]. Most sequencing

errors are flagged by a low quality value and can be

easily filtered by checking this value. However, some

sequencing errors may still demonstrate a high qual-

ity value preventing them to be filtered in this way.

For high-coverage sequencing, a base will be

sequenced many times and the correct form is

likely to appear with much higher frequency than

the errors. Thus, the data accuracy can be further

improved by correcting the errors in raw reads

based on the frequency information [14, 38], a

30 Li et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bfg/article/11/1/25/191455 by guest on 17 April 2024



process often referred to as pre-assembly error cor-

rection. In OLC assembly software, the low-quality

filtering process is often performed, although the

pre-assembly error correction is often omitted. The

small amount of sequencing errors remaining after

filtering do not usually cause serious problem be-

cause these sequencing errors can be tolerated in

the pair-wise alignment (O) by allowing some mis-

matches, which will not increase the computational

cost much. Furthermore, OLC identifies and ex-

cludes sequencing errors in the inferring consensus

(C) step based on the multiple sequencing alignments

[6, 7]. In DBG software, both the low-quality filter-

ing and pre-assembly error correction are usually ne-

cessary, because reads containing lots of sequencing

errors will create huge amount of false k-mers that

are not contained in the genome sequence and usu-

ally appear only once in all reads data set. These false

k-mers will consume several times more computer

memory in building the k-mer graph. Moreover,

sequencing errors will create many branch paths

with low depth in the graph, which will add com-

plexity to the graph and make it difficult to infer the

contig correctly [18, 19]. As the sequencing cost de-

creases with the development of sequencing technol-

ogies, the sequencing coverage for de novo projects

generally increases. Higher sequencing coverage

will benefit the pre-assembly error correction, as

well as the final consensus sequence.

There are generally two ways to do pre-assembly

error correction, both of which can be used with

either OLC or DBG software. The first method is

based on the reads alignment. This initially finds all

the overlapped reads by doing multiple alignments,

and then distinguish sequencing errors from correct

bases through a probability model. Note that the

overlap detection step is CPU-intensive. Many soft-

ware applications, including Allpath-LG [18],

SHREC [39], HiTEC [40] and ECHO [41] cur-

rently adopt this method. The second method is

based on the k-mer frequency spectrum. First, this

counts the frequencies of all k-mers in the reads data

set, and then divides them into two types: trusted

k-mers and untrusted k-mers. Several of the initial

programs developed only used the k-mer frequency

and an arbitrarily made cutoff as the judgment call

(Figure 4A) [14, 19]. More recently developed pack-

ages find the optimal cutoff by minimizing the total

false positive and false negative errors [42] and some

further take the quality value into consideration [38]

to prevent mistaking low-frequency k-mers as

untrusted k-mers caused by sequencing coverage

bias problems. The error correction tools can identify

genomic positions with sequencing error by using

the distribution pattern of k-mers (Figure 4B), and

then try to find a path with minimal change that will

transform all the untrusted k-mers into trusted

k-mers. Software such as Euler [14], SOAPdenovo

[19], Reptile [43] and Quake [38] all adopt this

method. No sequence alignment is needed in this

method so it saves substantial computation time.
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Figure 4: Error correction by the k-mer spectrum
method utilizing coverage information. (A) Distribution
of k-mer (K¼17) frequency for two sets of 40� simu-
lated Arabidopsis WGS data with read length (L) 100bp.
One data set is error free, while the other data set
has 1% sequencing error. The average k-mer frequency
for error-free and1% error reads are 34 and 31, respect-
ively. In the 1% error curve, about 80% k-mer species
have frequency below five, most of which are caused
by sequencing errors. (B) The simplest pattern of
k-mers (K¼ 5bp) on a read where a sequencing error
happens. The 5 k-mers which crossed the error base
appear in low frequency, whereas the surrounding
k-mers appear in high frequency. In practice, the situ-
ations are often more complex than this, some of the
false k-mers may appear in high frequency, some of the
correct k-mers may appear in low frequency and more
than one sequencing errors nearby each other may
create a longer set of low-frequency k-mers.
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Contig construction
Contig construction is building a continuous se-

quence using reads overlap information, which is

the core step in any assembly software. Essentially,

OLC and DBG algorithms only corresponding to

contig construction; however, people often use

them to refer to the whole set of assembly pipelines.

Assuming that the usual sequencing error rate and

heterozygous rate are low, the major effort expended

in this step is to deal with repeats. Here a model

OLC and DBG graph represent repeats in different

ways (Figure 5). Repeat reads are all placed as nodes

in the OLC graph, whereas repeat k-mers are col-

lapsed into single nodes in the DBG graph. Repeats

will increase the computational time needed for

pair-wise reads alignment in the OLC algorithm be-

cause reads coming from repeat regions have many

areas of overlap with other reads. Besides, it is very

memory intensive to store these overlap relation-

ships. A solution to this problem is to mask the

repeat patterns (partial or whole reads) first (pre-

masking) before or during finding the overlap and

recover the masked repeats after contig construction

or by gap closure with pair-end information [7, 44].

In this case, no repeats exist in the repeat-masked

OLC graph that also makes it much easier to infer

contigs. In contrast, in the DBG algorithm, the re-

peats will not increase the computational consump-

tion because there is no pair-wise reads alignment

step and k-mers nodes from repeats are collapsed

together during the construction of DBG [14, 16].

Despite their different strategies, OLC and DBG

algorithms have the same goal in contig construction,

that is to find continuous paths without branching

and stopping at repeat boundaries. These found paths

forms initial contigs, which serve as the input to scaf-

fold linkage. Besides repeats, the sequencing error

and heterozygosity also affect contig construction

and OLC tolerates them in finding overlaps by

allowing some mismatches, whereas DBG excludes

them on the k-mer graph by removing tips and

low-coverage edges and by merging bubble edges.

One of the most important issues to consider are

repeat sequences, and the first question to ask is:

what is a repeat? The answer is that what is defined

as a repeat is relative to the sequence length. In

genome assembly, the repeats that we are concerned

about are those with lengths longer than the read

length, meaning that no single read can cross-span

these repeat regions. Important to note is that by

extending read length to exceed the longest of all

of the repeats, from an assembly point of view there

will no longer be any repeats. With regard to OLC

and DBG algorithms, the overlap length between

reads, i.e. the cutoff of overlap length (T) in OLC

and the k-mer size (K) in DBG determines the ability

to overcome repeats. When T or K is larger than the

size of any repeats, then repeats will disappear from

A

B C

Figure 5: The difference to represent repeats in OLC and DBG graphs. (A) Two separate genomic regions share a
repeat fragment (in the middle) and the flanking regions are unique sequences. Top is the genomic sequence and
bottom are the sequenced reads. (B) The OLC reads graph.The nodes represents reads and the links show overlap
relations. All the repeat reads are placed on the graph as nodes. (C) The DBG k-mer graph.The reads are chopped
into shorter k-mers. The nodes represents k-mers and the links show neighboring relations. The k-mers from
repeat regions are collapsed together.
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the assembly view. A rise in read length (L) is the

precondition for the rise of overlap length (T and K)

because, L is the upper end of T and K. In the im-

plementation, when reads length gets longer, it is

easy to increase T in OLC, however, it is hard to

increase K in DBG for several reasons including

computational limitations. Therefore, OLC works

better with longer reads to overcome repeats.

When reads length and overlap length are long

enough, the premasking and recovering of repeats

steps can then be omitted in the OLC algorithm.

Whereas longer read lengths help less with DBG,

most of the current DBG software can only accept

a k-mer size of up to 31 bp, with some of the latest

versions going up to 127 bp [16, 18, 19]. The limited

k-mer size in DBG has therefore limited it’s potential

to use long reads to overcome repeats. Although

DBG has intrinsic high computational efficiency in

dealing with repeats, it also has this major weakness

of a low-efficiency in utilizing longer reads.

The assembly result varies significantly on gen-

omes with various repeat contents. The genomic re-

gions with continuous unique k-mers form the DBG

initial contigs, and this process can be simulated on

well-sequenced reference genomes (Table 2). We

see that for relatively repeat-less genomes such as

Arabidopsis, DBG algorithms can produce a good as-

sembly result, however, for the relatively repeat-rich

genomes such as maize, DBG algorithms produce

very poor results. As outlined, increasing the k-mer

size will be beneficial in resolving more repeats and

resulting in longer initial contigs, however, this will

further increase the consumption of computer

resources as that is often already very significant

when assembling large genomes. Taking the

human genome for example, it often requires

>100 G of memory and several days of running

time [19]. A larger k-mer size also decreases the sen-

sitivity for solving heterozygotes and sequencing

errors, thus making it more difficult to assemble.

Scaffold linkage
To further resolve repeats and obtain a longer

assembled sequence, the scaffold linkage step orders

and orients the contigs into scaffolds using pair-end

reads [6, 19, 45–48], which can be generated by most

sequencing technologies and is often utilized by de
novo sequencing techniques. If one read of pair-end

reads is aligned to one contig and the other read is

aligned to another contig, we assign a link between

these two contigs. All the contigs along with their

related links form the contig graph. Since the repeat

contigs can have many links with other contigs,

making it difficult to infer the relationship between

contigs, one can first mask the repeat contigs and use

unique contigs only to construct scafflolds and re-

cover the repeat contigs in the end [7, 18, 19]. In

OLC algorithms (without premasking repeats),

repeat contigs can be identified by the number of

reads they contain, because repeat contigs usually

contains many more reads than a unique contig. In

contrast, in the DBG algorithm, repeat contigs can

be identified by the k-mer coverage depth of contig,

which is usually higher than that of unique contigs.

In both OLC and DBG algorithms, repeat contigs

can also be inferred from the topology structure of

Table 2: Simulation of contig construction on reference genomes of 10 species

Species Assembly
version

Genome
size (bp)

Total contig
size (bp)

% Contig
coverage

Contig N50
size (bp)

Contig N90
size (bp)

Escherichia coli NC_000913 460278 447452 97.21 25 814 5802
Yeast SGD1 12070 899 11264319 93.32 29 274 8388
Human NCBI36 2 832 359 855 2117618 241 74.77 2231 431
Chicken WASHUC2 917492994 830 489 291 90.52 6735 1666
Fruitfly BDGP5 120290 946 112001873 93.11 29729 5799
Arabidopsis TIGR Release 5 118 998160 101983194 85.7 9540 1145
Rice IRGSP build 3 370733 456 231393 840 62.4 2185 366
Maize prepublished 2 033 474 566 325 408 406 16.0 1013 172
Poplar release v1.0 284264963 227183 403 79.9 2580 420
Grape assembly v1 290237009 195259 295 67.3 2952 329

Note:We download the reference genome sequences from the official websites for each species genomes and excluded the inside gap N-sequences
from the reference genome sequences first before doing analysis. The contig simulation is equivalent to find the continuous regions with unique
k-mers.We use k-mer size 31bp to construct contigs for all the species. Values in rows of Arabidopsis and Maize are highlighted with bold style,
which represents relatively repeat-less and repeat-rich genome, separately.
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the contig graph before scaffolding [19]. The unique

contigs from either OLC or DBG algorithms form a

non-redundant sequence blocks of the genome, and

in theory there should be no overlap between any of

these contigs. Links between neighboring contigs are

determined by pairs of reads mapping to these con-

tigs. As OLC contigs contain reads information,

alignment from reads to contigs is unnecessary. In

contrast, reads information are usually lost in the

DBG contigs, so it is necessary to remap the paired

reads onto the contigs. The DBG contigs are often

much shorter than the OLC contigs, making the

DBG scaffold linkage and gap closure more import-

ant and also more difficult [49].

Besides repetitive contigs, there are two other

problems for scaffold construction. The first is the

false mapping links that can be distinguished from

real links by the supported pair number. Links with

a pair number less than that of a threshold (often set

to three), are often considered as unconfident links

and excluded from the scaffold construction [19, 45].

The other problem is interleaving that is caused by

short contigs. In theory, scaffold linkage with inter-

leaving problems is classified as a NP-hard problem

[46]. Simple interleaving structures can be identified

on the contig graph and resolved by heuristic

approaches (Figure 6). However, if the interleaving

problem is complex, it will be difficult for heuristic

approaches to resolve. For complex interleaving

problems restricted to small local regions, we can

select the best topology by the enumeration

method utilizing pair-end supporting evidence, be-

cause the correct contig order will be supported best

by all the read pairs. As denovo projects often generate

pair-end reads with gradient insert sizes, to make

scaffold construction easier and reduce interleaving,

we suggest to construct scaffolds starting with short

paired-end reads and then iterating the scaffolding

process, step by step, using longer insert size

paired-end reads [19]. The gap size can then be esti-

mated by all the reads pairs mapping to the neigh-

boring contigs.

Gap closure
To make the assembled sequence more complete,

we need to close the leaving gaps [19, 50, 51].

After the scaffold linkage step, a set of non-

redundant scaffold sequences is obtained which dis-

tribute separately along the genome. The gaps

between scaffolds are called out-gaps that are often

large and cannot be crossed by any pair-end reads;

whereas the gaps inside scaffolds are called in-gaps

that are often small and therefore can be crossed by

available pair-end reads. Both the in-gap and out-gap

can be formed because of either repeats (repeat gap)

or uncoverage of sequencing (Lander–Waterman

gap). In theory, the repeat gaps can be closed by

retrieving the repeat reads and contigs which were

not assembled in scaffolds and utilizing the pair-end

relations [7, 19]. However, for Lander–Waterman

gaps, the missing reads need to be generated by add-

itional sequencing of the fragments localized in the

gap regions, which are often created by PCR amp-

lification [52]. After obtaining the necessary reads

and contigs for a gap, the closure process is the

same as local scale contig assembly, which can use

either OLC or DBG algorithms [50, 51]. For most

small and simple gaps, the local assembly can be rela-

tively easily completed; however, for large and com-

plex gaps, it is often difficult to resolve the local

assembly. This means that most effort in gap closure

has been mainly focussed on closing the small

in-gaps. Note though, that because the sequences

inside gaps are often repeats that tend to cause align-

ing problems, the accuracy of filled sequences are

often relatively low and of questionable quality

[22, 23].

A

B

Figure 6: Models of scaffold linkage. (A) Example without interleaving. Each contig has only one in-going arc and
one out-going arc (except at the border) and this situation is easy to resolve. (B) Example with interleaving. One
contig can have more than one in-going arcs or out-going arcs that are often caused by small contigs. This situation
is more difficult to resolve.
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CONCLUSIONANDDISCUSSION
Considering the computational consumption of time

and memory, the OLC algorithm is more suitable for

the low-coverage long reads, whereas the DBG

algorithm is more suitable for high-coverage short

reads and especially for large genome assembly. It

should be noted though, that for both OLC and

DBG algorithms, the assembly results may vary sig-

nificantly among different genomes and sequencing

technologies. Given a specified species genome,

longer reads and lower sequencing errors will be

beneficial for the assembly; whereas for any specific

sequencing technology, fewer repeats and lower

heterozygosity will be beneficial for the assembly

process. Besides OLC and DBG algorithm, the

application of another algorithm: string graph in

de novo assembly, has also been studied in recent

years [53].

As sequencing by second-generation technologies

has got progressively cheaper and cheaper, more and

more genome projects have moved towards

short-read de novo assembly. Sequencing cost has

become less of a limitation for genomics research,

but the bioinformatics has conversely grown more

important than ever before. In May 2011, as illumina

(the most popular second-generation technology)

launched the V3 sequencing kit for its HiSeq ma-

chine, its throughput (pair-end 100 bp) has been ele-

vated to 600 Gb/run compared to 200 Gb/run in

2010, and the price of its personal genome sequen-

cing service (40� coverage, 120 G data) has been

reduced to 5000$ compared with 15 000 in 2010

(www.illumina.com). Due to this unmatched acces-

sibility, the number of researchers using second-

generation technologies has rapidly grown, and the

debates and competition surrounding short-read

de novo assembly is likely to carry on for several

years in future, accompanied by further improve-

ments of both sequencing technologies and assembly

algorithms.

If longer reads are likely to come in the future,

where should assembly algorithms go? In June 2011,

Roche/454 launched its latest machine with read

lengths of up to 800 bp, and a reduced cost of

one-third of its original level (www.454.com).

Another similar technology is Ion Torrent, aiming

to be able to achieve a 400 bp read length and 1 G/

run throughput by the year 2012 (www.iontorrent

.com). We seem to have arrived at a turning point

for de novo assembly, because the cheap long reads

have significant advantages over short reads in the

de novo assembly of large genomes. If long reads

become as cheap as and accurate as short reads,

then long reads will certainly become the only

option. However, the current Roche/454 sequen-

cing is still about 100 times more expensive than

Illumina/Solexa technologies, which has limited its

large-scale application to date. Ion Torrent may be

cheaper but until new chips become available, it is

unlikely to be able to compete with Illumina in the

near future. A further limitation is that both Roche/

454 and Ion torrent produce insertion/deletion

errors in polymer regions, a deficiency compared

with Illumina/Solexa. A practical short term solution

is to do hybrid assembly using both Roche/454 and

Illumina/Solexa reads, for example, one can use the

combination of less than 10� Roche/454 reads and

more than 30� Illumina/solexa reads. A growing

number of software has began to support the

hybrid assembly approach, such as Newbler [12]

and CABOG [54]. The key point is to design algo-

rithms that can distinguish data characteristics from

various types of sequencing technologies, as well as

combine the advantages of different technologies and

overcome the deficiencies of each other.

Entering the second decade of 21st century,

high-quality genome sequences for many species

are still in great demand by the genomics field.

Besides the second-generation sequencing technolo-

gies, there are many other new technologies helpful

for denovo sequencing, including the single molecular

sequencing PacBio (www.pacificbiosciences.com)

and the Optical Mapping physical technology

OpGen (www.opgen.com), which has recently

entered the market. PacBio produces extreme long

reads (1–10 kb) but with a high error rate (15–20%),

whereas OpGen can generate 100 kb–1 Mb length

physically linked markers, which facilitates the phys-

ical map construction. Driven by the development of

these technologies, we see a bright future for de novo
assembly of large genomes, with the standard likely

to be raised from draft sequence to chromosome

level sequence and from haploid sequence to diploid

sequence. The development of assembly algorithms

is tied closely to the development of sequencing

technologies. The history has turned from OLC for

Sanger sequencing, to DBG for second-generation

sequencing, and the future will likely lead back to

OLC for long reads sequencing. In the next few

years, short reads assembly and long reads assembly

may co-exist and both the OLC and DBG algo-

rithms will be improved continuously. Small simple
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genomes can be assembled well with pure short

reads, middle difficulty genomes can use the hybrid

assembly method using both long and short reads,

whereas large complex genomes will rely more on

long reads assembly. As outlined here, it is clear that

sequencing technologies and assembly algorithms

will change rapidly over the next few years, and as-

sembly will get easier and better as technologies con-

tinue improve.

Key Points

� High-qualitygenome sequences formany species are still strong-
ly desired by the genomics community.With the rapid develop-
ment of sequencing technologies and assembly algorithms, we
have seen practical improvements and a bright future lies ahead.

� There are two major types of assembly algorithms: OLC and
DBG; both of them are in accordance with Lander^Waterman
model, but suit the assembly of different read lengths and
sequencing depths, and have significant differences in computa-
tional efficiency.

� How well a genome can be assembled depends not only on
sequencing technologies such as read length and sequencing
error rate, but also on the characteristics of the genome, includ-
ing repeat and the heterozygosity rate of the sequenced sample.
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